
NAG C Library Function Document

nag_ztrevc (f08qxc)

1 Purpose

nag_ztrevc (f08qxc) computes selected left and/or right eigenvectors of a complex upper triangular matrix.

2 Specification

void nag_ztrevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
const Boolean select[], Integer n, Complex t[], Integer pdt, Complex vl[],
Integer pdvl, Complex vr[], Integer pdvr, Integer mm, Integer *m,
NagError *fail)

3 Description

nag_ztrevc (f08qxc) computes left and/or right eigenvectors of a complex upper triangular matrix T . Such
a matrix arises from the Schur factorization of a complex general matrix, as computed by nag_zhseqr
(f08psc), for example.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Tx ¼ �x and yHT ¼ �yH ðor THy ¼ ���yÞ:
The function can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all the
eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix Q.

Normally Q is a unitary matrix from the Schur factorization of a matrix A as A ¼ QTQH ; if x is a (left or
right) eigenvector of T , then Qx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that
maxðjReðxiÞj þ j ImðxiÞjÞ ¼ 1.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: indicates whether left and/or right eigenvectors are to be computed as follows:

if side ¼ Nag RightSide, only right eigenvectors are computed;

if side ¼ Nag LeftSide, only left eigenvectors are computed;

if side ¼ Nag BothSides, both left and right eigenvectors are computed.

Constraint: side ¼ Nag RightSide, Nag LeftSide or Nag BothSides.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qxc

[NP3645/7] f08qxc.1



3: how_many – Nag_HowManyType Input

On entry: indicates how many eigenvectors are to be computed as follows:

if how many ¼ Nag ComputeAll, all eigenvectors (as specified by side) are computed;

if how many ¼ Nag BackTransform, all eigenvectors (as specified by side) are computed
and then pre-multiplied by the matrix Q (which is overwritten);

if how many ¼ Nag ComputeSelected, selected eigenvectors (as specified by side and
select) are computed.

Constraint: how many ¼ Nag ComputeAll, Nag BackTransform or Nag ComputeSelected.

4: select½dim� – const Boolean Input

Note: the dimension, dim, of the array select must be at least maxð1;nÞ when
how many ¼ Nag ComputeSelected and at least 1 otherwise.

On entry: select specifies which eigenvectors are to be computed if
how many ¼ Nag ComputeSelected. To obtain the eigenvector corresponding to the eigenvalue
�j, select½j� must be set TRUE.

select is not referenced if how many ¼ Nag ComputeAll or Nag BackTransform.

5: n – Integer Input

On entry: n, the order of the matrix T .

Constraint: n � 0.

6: t½dim� – Complex Input/Output

Note: the dimension, dim, of the array t must be at least maxð1; pdt� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix T is stored in t½ðj� 1Þ � pdtþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix T is stored in t½ði� 1Þ � pdtþ j� 1�.
On entry: the n by n upper triangular matrix T , as returned by nag_zhseqr (f08psc).

On exit: t is used as internal workspace prior to being restored and hence is unchanged.

7: pdt – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt � maxð1;nÞ.

8: vl½dim� – Complex Input/Output

Note: the dimension, dim, of the array vl must be at least

maxð1; pdvl�mmÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvl� nÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag RightSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vl½ðj� 1Þ � pdvlþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vl½ði� 1Þ � pdvlþ j� 1�.
On entry: if how many ¼ Nag BackTransform and side ¼ Nag LeftSide or Nag BothSides, vl
must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_zhseqr
(f08psc)). If how many ¼ Nag ComputeAll or Nag ComputeSelected, vl need not be set.

On exit: if side ¼ Nag LeftSide or Nag BothSides, vl contains the computed left eigenvectors (as
specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns (depending on the value of order) of the array, in the same order as their eigenvalues.

f08qxc NAG C Library Manual

f08qxc.2 [NP3645/7]



vl is not referenced if side ¼ Nag RightSide.

9: pdvl – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

10: vr½dim� – Complex Input/Output

Note: the dimension, dim, of the array vr must be at least

maxð1; pdvr�mmÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvr� nÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag LeftSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vr½ðj� 1Þ � pdvrþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vr½ði� 1Þ � pdvrþ j� 1�.

On entry: if how many ¼ Nag BackTransform and side ¼ Nag RightSide or Nag BothSides, vr
must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_zhseqr
(f08psc)). If how many ¼ Nag ComputeAll or Nag ComputeSelected, vr need not be set.

On exit: if side ¼ Nag RightSide or Nag BothSides, vr contains the computed right eigenvectors
(as specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns (depending on the value of order) of the array, in the same order as their eigenvalues.

vr is not referenced if side ¼ Nag LeftSide.

11: pdvr – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

12: mm – Integer Input

On entry: the number of rows or columns (depending on the value of order) in the arrays vl and/or
vr. The precise number of rows or columns required, required rowcol, is n if how many ¼
Nag ComputeAll or Nag BackTransform; if how many ¼ Nag ComputeSelected,
required rowcol is the number of selected eigenvectors (see select), in which case
0 � required rowcol � n.

Constraint: mm � required rowcol.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qxc

[NP3645/7] f08qxc.3



13: m – Integer * Output

On exit: required rowcol, the number of selected eigenvectors. If how many ¼ Nag ComputeAll
or Nag BackTransform, m is set to n.

14: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, mm = hvaluei.
Constraint: mm � required rowcol, where required rowcol is the number of selected eigenvectors.

On entry, pdt ¼ hvaluei.
Constraint: pdt > 0.

On entry, pdvl ¼ hvaluei.
Constraint: pdvl > 0.

On entry, pdvr ¼ hvaluei.
Constraint: pdvr > 0.

NE_INT_2

On entry, pdt ¼ hvaluei, n ¼ hvaluei.
Constraint: pdt � maxð1;nÞ.

NE_ENUM_INT_2

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08qxc NAG C Library Manual

f08qxc.4 [NP3645/7]



7 Accuracy

If xi is an exact right eigenvector, and ~xxi is the corresponding computed eigenvector, then the angle
�ð~xxi; xiÞ between them is bounded as follows:

�ð~xxi; xiÞ �
cðnÞ�kTk2

sepi

where sepi is the reciprocal condition number of xi.

The condition number sepi may be computed by calling nag_ztrsna (f08qyc).

8 Further Comments

The real analogue of this function is nag_dtrevc (f08qkc).

9 Example

See Section 9 of the document for nag_zgebal (f08nvc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qxc

[NP3645/7] f08qxc.5 (last)


	f08qxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	t
	pdt
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



