f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qxc

NAG C Library Function Document

nag ztrevc (f08qxc)

1 Purpose

nag_ztrevc (f08gxc) computes selected left and/or right eigenvectors of a complex upper triangular matrix.

2 Specification

void nag_ztrevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
const Boolean select[], Integer n, Complex t[], Integer pdt, Complex vl[],
Integer pdvl, Complex vr[], Integer pdvr, Integer mm, Integer *m,
NagError xfail)

3 Description

nag_ztrevc (f08gxc) computes left and/or right eigenvectors of a complex upper triangular matrix 7. Such
a matrix arises from the Schur factorization of a complex general matrix, as computed by nag zhseqr
(f08psc), for example.

The right eigenvector z, and the left eigenvector y, corresponding to an eigenvalue A, are defined by:
Tz = Az and 47T = My (or Ty = Ay).

The function can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all the
eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix Q.

Normally Q is a unitary matrix from the Schur factorization of a matrix A as A = QT'Q"; if x is a (left or
right) eigenvector of T, then QQx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that
max (| Re(z;)[+ [Im(z;)[) = 1.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag SideType Input
On entry: indicates whether left and/or right eigenvectors are to be computed as follows:
if side = Nag_RightSide, only right eigenvectors are computed,;
if side = Nag_LeftSide, only left eigenvectors are computed,
if side = Nag_BothSides, both left and right eigenvectors are computed.
Constraint. side = Nag_RightSide, Nag_LeftSide or Nag_BothSides.

[NP3645/7] 108gxc. 1

f08qxc NAG C Library Manual

3: how_many — Nag HowManyType Input
On entry: indicates how many eigenvectors are to be computed as follows:
if how_many = Nag_ComputeAll, all eigenvectors (as specified by side) are computed;

if how_many = Nag_BackTransform, all eigenvectors (as specified by side) are computed
and then pre-multiplied by the matrix () (which is overwritten);

if how_many = Nag_ComputeSelected, sclected eigenvectors (as specified by side and
select) are computed.

Constraint: how_many = Nag_ComputeAll, Nag_BackTransform or Nag_ComputeSelected.

4: select[dim] — const Boolean Input

Note: the dimension, dim, of the array select must be at least max(1,n) when
how_many = Nag_ComputeSelected and at least 1 otherwise.

On entry: select specifies which eigenvectors are to be computed if
how_many = Nag_ComputeSelected. To obtain the eigenvector corresponding to the eigenvalue
A;, select[j] must be set TRUE.

select is not referenced if how_many = Nag_ComputeAll or Nag_BackTransform.

5: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

6: t{dim] — Complex Input/Output
Note: the dimension, dim, of the array t must be at least max(1, pdt x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix T is stored in t[(j — 1) x pdt + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the n by n upper triangular matrix 7', as returned by nag_zhseqr (f08psc).

On exit: t is used as internal workspace prior to being restored and hence is unchanged.

7: pdt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt > max(1,n).

8: vl[dim] — Complex Input/Output

Note: the dimension, dim, of the array vl must be at least
max(1, pdvl x mm) when side = Nag_LeftSide or Nag_BothSides and
order = Nag_ColMajor;
max (1, pdvl X n) when side = Nag_LeftSide or Nag_BothSides and
order = Nag_RowMajor;
1 when side = Nag_RightSide.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in vI[(j — 1) X pdvl + ¢ — 1] and
if order = Nag_RowMajor, the (i,5)th element of the matrix is stored in vl[(i — 1) x pdvl+ j — 1].

On entry: if how_many = Nag BackTransform and side = Nag LeftSide or Nag BothSides, vl
must contain an n by n matrix ¢ (usually the matrix of Schur vectors returned by nag_zhseqr
(f08psc)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vl need not be set.

On exit: if side = Nag_LeftSide or Nag_BothSides, vl contains the computed left eigenvectors (as
specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns (depending on the value of order) of the array, in the same order as their eigenvalues.

f08gxc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qxc

10:

11:

12:

vl is not referenced if side = Nag_RightSide.

pdvl — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order = Nag_ColMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1,n);
if side = Nag_RightSide, pdvl > 1;

if order = Nag_RowMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

vr[dim] — Complex Input/Output

Note: the dimension, dim, of the array vr must be at least
max(1, pdvr X mm) when side = Nag_RightSide or Nag_BothSides and
order = Nag_ColMajor;
max(1,pdvr X n) when side = Nag_RightSide or Nag_BothSides and
order = Nag_RowMajor;

1 when side = Nag_LeftSide.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in vr[(j — 1) x pdvr + ¢ — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix is stored in vr[(i — 1) x pdvr + j — 1].

On entry: if how_many = Nag_BackTransform and side = Nag_RightSide or Nag_BothSides, vr
must contain an n by n matrix () (usually the matrix of Schur vectors returned by nag zhseqr
(f08psc)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vr need not be set.

On exit: if side = Nag_RightSide or Nag_BothSides, vr contains the computed right eigenvectors
(as specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns (depending on the value of order) of the array, in the same order as their eigenvalues.

vr is not referenced if side = Nag_LeftSide.

pdvr — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order = Nag_ColMajor,
if side = Nag _RightSide or Nag BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1;

if order = Nag_RowMajor,
if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);
if side = Nag_LeftSide, pdvr > 1.

mm — Integer Input

On entry: the number of rows or columns (depending on the value of order) in the arrays vl and/or
vr. The precise number of rows or columns required, required_rowcol, is n if how_many =
Nag_ComputeAll or Nag_BackTransform; if how_many = Nag_ComputeSelected,
required_rowcol 1is the number of selected eigenvectors (see select), in which case
0 < required_rowcol < n.

Constraint: mm > required_rowcol.

[NP3645/7] 108gxc.3

f08qxc

13:

14:

6

m — Integer *

NAG C Library Manual

Output

On exit: required_rowcol, the number of selected eigenvectors. If how_many = Nag ComputeAll

or Nag_BackTransform, m is set to n.

fail — NagError *

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, mm = (value).

Output

Constraint: mm > required_rowcol, where required_rowcol is the number of selected eigenvectors.

On entry, pdt = (value).
Constraint: pdt > 0.

On entry, pdvl = {value).
Constraint: pdvl > 0.

On entry, pdvr = (value).
Constraint: pdvr > 0.

NE_INT 2

On entry, pdt = (value), n = (value).
Constraint: pdt > max(1,n).

NE_ENUM_INT 2

On entry, side = (value), n = (value), pdvl = {value).
Constraint: if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1,n);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), n = (value), pdvr = (value).
Constraint: if side = Nag RightSide or Nag BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1.

On entry, side = (value), mm = (value), pdvl = (value).
Constraint: if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), mm = (value), pdvr = (value).
Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);
if side = Nag_LeftSide, pdvr > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

f08gxc.4

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qxc

7 Accuracy

If z; is an exact right eigenvector, and z; is the corresponding computed eigenvector, then the angle
0(%;, x;) between them is bounded as follows:

c(n)el T,

0(z;,x;) <
(@) < T

where sep; is the reciprocal condition number of z;.

The condition number sep; may be computed by calling nag_ztrsna (f08qyc).

8 Further Comments

The real analogue of this function is nag_dtrevc (f08qkc).

9 Example

See Section 9 of the document for nag_zgebal (f08nvc).

[NP3645/7] f08qgxc.5 (last)

	f08qxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	t
	pdt
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

